

Agenda

1. Introduction by Franz Fayot, Minister of the Economy and Minister for Development Cooperation and Humanitarian Affairs of Luxembourg

2. Presentation of the PCDS

What is the PCDS, key benefits and major achievements – Jérôme Petry, Deputy Director Sustainable Technologies, The Ministry of the Economy of Luxembourg

Franz Fayot Minister of the Economy @ Ministry of the Economy

3. Testimonial on the practical usage of the PCDS - Panel hosted by Jérôme Petry

ArcelorMittal - Mauro Chiapini, ArcelorMittal

Astron Buildings – René Oly, Lindab

GS1 Nederland – Jan Merckx

Tarkett - Alain Casoli

Jerome Petry

Thibaut Wautelet Deputy Director Sustainable Technologies @ Project Manager @ +Impakt Ministry of the Economy

4. 0&A Session

Discussion hosted by - Thibaut Wautelet, +Impakt

Jan Merckx Sustainability Specialist @ GS1 Nederland

Alain Casoli Tarkett

René Oly Innovation and Methods Manager @ Astron Buildings

Mauro Chiappini Research Engineer Environmental Sustainability @ ArcelorMittal

1. Introduction

Video message by
Mr. Franz Fayot, Minister of the Economy
and Minister for Development
Cooperation and Humanitarian Affairs
of Luxembourg

2. Presentation of the PCDS

- 1. What is the Product Circularity Data Sheet?
- 2. Key benefits of the PCDS

- 3. PCDS System
- 4. Major achievements of the PCDS
- 5. Platforms involved

2.1. What is the Product Circularity Data Sheet

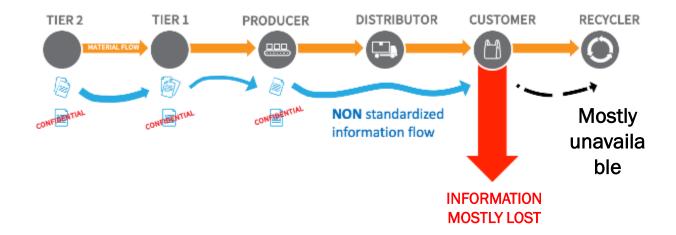
Group of +50 companies

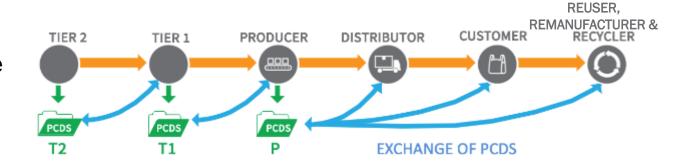
Ministry of the Economy of Luxembourg +Impakt

focusing on the establishment of an industry standard for communicating data on the circularity of products:

- Save costs to manufacturers & suppliers by providing a standardized approach to offer product information
- Align with a common language on circularity features
- Support the design of circular & healthier products
- 4. Support the implementation of cost-effective circular business models

PHASES SUPPORTED BY THE MINISTRY OF THE ECONOMY OF LUXEN BOURG WITH POTENTIAL CO-FUND


2.2. Key benefits of the PCDS



Problem statement:
Collecting circularity data is expensive,
difficult and non-standardized

The solution: Standardized way to share circularity data at each step of the value chain

- a data template which contains standardized and trustworthy information on the circularity of a product
- 2) a **third-party verification process** to validate the content of the **PCDS**
- 3) a **standardized data exchange protocol** based on a decentralized data storage approach

2.3. PCDS System

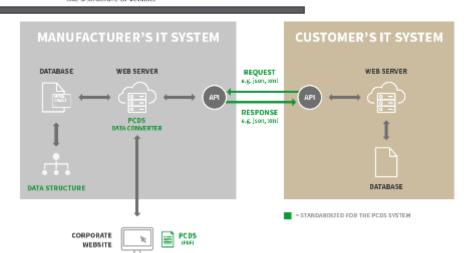
SECTIONS	STATEMENTS (EXAMPLES)
GENERAL INFORMATION	
COMPOSITION	THE PRODUCT CONTAINS > 75-95 % POST-CONSUMER RECYCLED CONTENT BY WEIGHT THE PRODUCT DOES NOT CONTAIN SUBSTANCES OF VERY HIGH CONCERN FROM THE REACH CANDIDATE LIST IN CONCENTRATION ABOVE 0.1% BY WEIGHT
DESIGNED FOR BETTER USE	THE PRODUCT CAN BE MAINTAINED & REPAIRED BY UNTRAINED PERSONNEL AT THE LOCATION OF THE PRODUCT USE
DESIGNED FOR DISSASSEMBLY	THE PRODUCT IS DESIGNED TO BE INSTALLED AND DEMOUNTED USING REVERSIBLE CONNECTORS
DESIGNED FOR RE-USE	THE PRODUCT IS DESIGNED FOR RE-USE AS IS OR WITH MINIMAL MODIFICATION THE PRODUCT IS DESIGNED FOR COMPOSTING IN A HOME COMPOSTER

Connection Types	Description
TypeI	 Direct charmonal commentary, two restmants are previously fixed by observat commentary (sector) is upopring.
Type II	 Indirect connection with inevestible chemical connection, which is stronger than the connected elements merchals products
Type III	 Direct connection with revenible chemical connection. Two elements are connected with other chemical substances, which can be removed on determinated i rester by refurbishment is possible).
Type IV	 Direct insert connection. New elements are connected by upland insertion of accessories into the element between its weaker after discountly).
Турк V	 biter connection with mechanical fixing decises, two elements are connected with mechanical connection, which can be immoved without damaging the elements (issue and exporting autition/edges/dity is possible).
Type VI	 Indirect connection via dependent third component. Two elements are separated with third element/component, fluit they have dependence in assembly (review a partly persiste).
TypeVII	 Interfact, connection, two elements are connected without being damaged by fluing devices (direct essee and recordig varion adaptability possible).
Type VIE	 Intermediary connection, two elements are connected by that element using day mechanical connections. Observed by a fore element does not affect the other tillness and reconfiguration had publish postable.
Type III	> General, Two elements are connected only by greatly force.

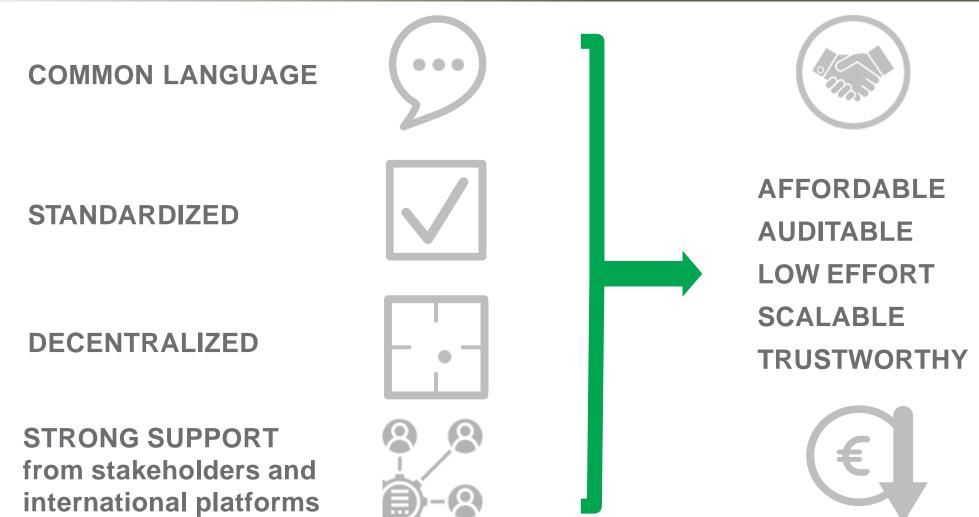
Public &: Extendition Types Types on developed by E. Durchisede, Twente Holsen by FAME Policy

4.9. disassembling

ability of a product to be taken apart at the end of its useful life in such a way that the constituent sub-elements or components can be re-used or recycled. (ISO 6707-3:2017, Definition 3.7.31)


This is distinct from demounting where the product is being removed from another context like a structure or vehicle.

ASSURANCE MECHANISMS



2.4. Major achievements of the PCDS

2.5. Platforms involved

World Business Council for Sustainable Development

3. Panel discussion

Testimonial on the practical usage of the PCDS

Jan Merckx Sustainability Specialist @ GS1 Nederland

Alain Casoli Tarkett

René Oly Innovation and Methods Manager @ Astron Buildings

Mauro Chiappini Research Engineer Environmental Sustainability @ ArcelorMittal

4. Q&A Session

Feel free to ask your questions in the second column on your right

E-mail: pcds@eco.etat.lu

Webpage: www.pcds.lu

